nowrun Özel Kullanıcı
Mesaj Sayısı : 556 Para : 93805 Rep : 0 Kayıt tarihi : 09/06/13
| Konu: POLİNOM KONU ANLATIMI Perş. Ağus. 01, 2013 9:29 am | |
| POLİNOMLAR NEDİR?POLİNOM ÇEŞİTLERİ NELERDİR?Polinomlarla İlgili Temel Kavramlar:N olmak üzere, P(x) = an xn + an-1 xn-1 +Î R ve n Îa0, a1, a2, ….an-1, an …. + a1 x + a0 şeklindeki ifadelere x değişkenine bağlı, reel katsayılı n’inci dereceden bir polinom denir.1. an xn, an-1 xn-1, …., ak xk, ….., ayx, a0 ifadelerinin her birine P(x) polinomunun terimleri denir.2. an, an-1, …., ak, …., ay, a0 reel sayılarına, polinomun terimlerinin katsayıları denir.3. P(x) polinomunda anxn terimindeki en büyük n sayısına polinomun derecesi denir ve [P(x)]=n şeklinde gösterilir.4. Derecesi en büyük olan anxn terimindeki an reel sayısına polinomun katsayısı, a0 sabitine ise polinomun sabit terimi denir.5. P(x) polinomu, terimlerin azalan derecelerine göre,P(x) = anxn + an-1xn-1 + …. + a1x + a0 şeklinde veya P(x) polinomu terimlerin artan derecelerine göre,P(x) = a0 + a1x + a2×2 + …. + an-1xn-1 + anxn biçiminde sıralanır.6. Katsayıları reel sayılardan oluşan polinoma “Reel Katsayılı Polinom” denir ve reel katsayılı polinomlar kümesi Rile gösterilir.Örnek:NÎP(x) = 2×5-3/n +xn-2 + 4 ifadesinin bir polinom olması için n kaç olmalıdır?Çözüm:5-3/n ifadesinin bir doğal sayı olması gerekir bunun için n yerine verilecek sayının 3’ün bölenleri olmalıdır.www.matematikcifatih.tr.gg 3’ün bölenleri ise n = 1, n = 3, 2 olması gerekir. O halde bu iki şartı da³ 0 den n ³n = -1, n = -3 Ayrıca n-2 gerçekleyen n = 3 sayısıdır. Buna göre, P(x) polinomuP(x) = 2×5-3/3 + x3-2 + 4P(x) = 2×4 + x + 4 dür.ÇOK DEĞİŞKENLİ POLİNOMP(x, y) = x3y2 – 2×4 y3 + xy + x – y + 1 şeklindeki polinomlara x ve y değişkenlerine bağlı reel katsayılı bir polinom denir.Bu polinomların derecesi x ve y’nin dereceler toplamının en büyüğüdür. der P(x, y) = der P(x) + der P(y) dir. Yukarıdaki iki değişkenli polinomun derecesi ikinci terimdeki x ve y’nin dereceler toplamıdır.Der P(x, y) = 4 + 3 = 7 dir.Örnek P(x, y) = 2×2y4 – 3×3y5 + x2y3-y5 + 1 polinomunun derecesi kaçtır?Çözüm:2×2y4 teriminin derecesi 2 + 4 = 6-3×3y5 teriminin derecesi 3 + 5 =8x2y3 teriminin derecesi 2 + 3 = 5-y5 teriminin derecesi 5Yukarıda belirtilen en büyük dereceli terimin derecesi P(x, y) polinomunun derecesidir. O halde, der P(x, y) = 8 dir.Örnek P(x) = x3 – 3×2 + 4x – 2 iseP(2)= ?, P(0) = ?, P(1) = ?Çözüm:P(2) = 23 – 3.22 + 4.2 – 2= 8 – 12 + 8 – 2 = 2 bulunur.P(0) = 03 – 3.02 + 4.0 – 2 = - 2 bulunur.P(1) = 13 – 3.12 + 4.1 – 2 = 1 – 3 + 4 – 2 = 0 bulunur.SIFIR POLİNOMUP(X) = anxn + an-1xn-1 + … + a2×2 + a1x + a0 polinomunda,an = an-1 = … = a1 = a0 = 0 ise; P(x) = 0xn + 0xn-1 + … + 0×2 + 0x + 0 polinomuna, sıfır polinomu denir.Sıfır polinomu, 0 ile gösterilir. Sıfır polinomunun derecesi belirsizdir.Örnek P(x) = (m + 3)x2 + (n – 5) x + 1 polinomunun sıfır polinomu olması için; m, n ve t reel sayılarını belirtelim.ÇözümP(x) polinomunun sıfır polinomu olması için; m + 3 = 0, n – 5 = 0, t = 0 ;m = -3, n = 5, t = 0 olmalıdır.SABİT POLİNOMP(x) = anxn + an-1xn-1 + … + a1x + a0 polinomunda, an = an-1 = … = a1 = 0 ve 0 ise; P(x) polinomuna, sabit polinom denir.¹a00xn + 0xn-1 + … + 0x + a0 sabit polinomu, a0 ile gösterilir.x0 = 1 olduğundan; a0 sabit polinomu, a0×0 biçiminde yazılabilir. Buna göre, sabit polinomun derecesi 0 dır.Örnek P(x) = (a – 4)x2 + bx + 7 polinomunun sabit polinom olması için, a ve b sayılarını belirtelim.ÇözümP(x) = A – 4)x2 + bx + 7 polinomunun sabit polinom olması için, a – 4 = 0 ve b = 0 olmalıdır. Buna göre, a = 4 ve b = 0 dır.İKİ POLİNOM EŞİTLİĞİDereceleri aynı ve aynı dereceli terimlerinin kat sayıları eşit olan iki polinoma, eşit polinomlar denir.n. dereceden,A(x) = anxn + an-1xn-1 + … + a2×2 + a1x + a0 veB(x) = bnxn + bn-1xn-1 + … + b2×2 + b1x + b0 polinomları için;an =ÛA(x) = B(x) bn, an-1 = bn-1, … , a2 = b2, a1, a0 = b0 dır.Örnek A(x) = 5×3 + (a + 1×2 + d,B(x) = (b - 1)x3 – 3×2 – (2c – 3) x + polinomları veriliyor. A(x) = B(x) olması için; a, b, c ve d yi bulalım.ÇözümA(x) = 5×3 + (a + 1)x2 + d = 5×3 + (a + 1)x2 + 0x + d, B(x) = (b – 1)x3 - 3×2 – (2c – 3)x + olduğundan;5 = b – 1, a + 1 = -3, 0ÞA(x) = B(x) = -(2c – 3), d = b = 6, a = -4, c = , d = dir.POLİNOM FONKSİYONLARIR®P : R P(x) = anxn + an-1xn-1 + … + a1x +®x a0 fonksiyonuna polinom fonksiyonu denir.R®P : R P(x) = 5×3 + 2×2 – 3x + 1 ifadesi polinom fonksiyonudur.®xÖrnek P(x) = x2 + 2x + 1 polinomu için P(X-1) polinomunu bulunuz.ÇözümP(x-1)’i bulmak için P(x)’de x yerine x-1’i yazalım.P(x-1) = (x-1)2 + 2(x-1) + 1= x2 – 2x + 1 + 2x – 2 + 1 = x2P(x-1) = x2 olarak bulunur.II: Yol:Önce P(x) = x2 + 2x + 1 = (x+1)2 olarak yazıp x yerine x-1’i yazalım.P(x-1) = (x-1+1)2 = x2 bulunur.Örnek P(x) polinomu için,P(x+2) = x3 – 2×2 + 4 eşitliği veriliyor. Buna göre P(x) polinomunu bulunuz.ÇözümP(x+2) = x3 - 2×2 + 4 eşitliğindeh –2 = x’i yerineÞH = x + 2 yazalım.P(h – 2 + 2) = (h – 2)3 – 2(h – 2)2 + 4P(h) = (h – 2)3 – 2(h – 2)2 + 4P(x) = (x – 2)3 – 2(x – 2)2 + 4 bulunur.POLİNOM KATSAYILAR TOPLAMIP(x) = anxn + an-1xn-1 + … + a1x + a0 polinomunda x = 1 yerine yazılırsaP(1) = an + an-1 + … + a1 + a0 katsayılar toplamı bulunur.P(x) polinomunda x = 0 yerine yazılırsa sabit terimi bulunur.Örnek P(x) = 2×4 + 5×3 – 3×2 + x – 1 polinomunun katsayıları toplamını bulunuz.ÇözümP(x) de x = 1 ‘i yerine yazalım.P(1) = 2.14 + 5.13 – 3.12 + 1-1= 2 + 5 – 3 + 1 – 1 = 4 bulunur.POLINOMLARDA İŞLEMLERPolinomlarda Toplama İşlemiA(x) = a4×4 + a3×3 + a2×2 + a1x + a0B(x) = b3×3 + b2×2 + b1x + b0Polinomları verilsin, bu iki polinomu toplarken aynı dereceli terimler kendi arasında toplanarak iki polinomun toplamı elde edilir.A(x) + B(x) = a4 x4 + ( a3 + b3 ) x3 + ( a2 + b2 ) x2 + ( a1 + b1 ) x + a0 + b0Örnek 3 x + 4 polinomlarınınÖP(x) = x3 + 2×2 – 3x + 1, Q(x) = 3×2 + toplamı olan polinomu bulunuz.Çözüm3-3)Ö3) x + 1 + = x3 + 5×2 + (ÖP(x) + Q(x) = x3 + (2+3) x2 + (-3) + x + 5 dir.Buna göre iki polinomun toplamı yine bir başka polinom olduğundan polinomlar toplama işlemine göre kapalıdır.1. Polinomlar kümesi, toplama işlemine göre kapalıdır.2. Polinomlar kümesinde toplama işleminin değişme özelliği vardır.3. Polinomlar kümesinde toplama işleminin birleşme özelliği vardır.4. Sıfır polinomu, polinomlar kümesinde toplama işlemine göre birim elemanıdır.5. Her polinomun, toplama işlemine göre tersi vardır.İki Polinomun FarkıP(x) ve Q(x) polinomları için, P(x) – Q(x) = P(x) + (-Q(x)) tir.P(x) – Q(x) polinomuna, P(x) polinomu ile Q(x) polinomunun farkı denir.Örnek A(x) = 5×4 + x3 – 3×2 + x + 2 veB(x) = - 5×4 + x3 + 2×2 + polinomları için, A(x) – B(x) farkını bulalım.ÇözümB(x) = -5×4 + x3 + 2×2 + ise, -B(x) = 5×4 - x3 – 2×2 - dir.A(x) – B(x) = A(x) + (-B(x))= (5×4 + x3 – 3×2 + x + 2) + (5×4 - x3 –2×2 - )= (5 + 5)x4 + ( - )x3 + (-3 –2)x2 + x + (2 - )= 10×4 – x3 – 5×2 + x - olur.Bu örnekte görüldüğü gibi, iki polinomun farkı da bir polinomdur.Her A(x) ve B(x) polinomları için, A(x) – B(x) ifadesi de polinom olduğundan; polinomlar kümesi, çıkarma işlemine göre kapalıdır.Polinomlarda Çarpma İşlemiA(x) ve b(x) gibi iki polinomun çarpımı, A(x) ‘in her terimi B(x)’in her terimi ile ayrı ayrı çarpılarak bulunur.anxn ile bkxk teriminin çarpımıanxn . bkxk = (an . bk) xn+k dir.Yani (5×3) . (-2×4) = 5 . (-2) x3+4 = -10×7Bu çarpmaya göre aşağıdaki eşitliği yazabiliriz.Der [A(x) . B(x) ] = der (A(x)) + der (B(x))ÖrnekA(x) = 3×4 + 1, B(x) = x2 + xC(x) = x2 – x + 1 polinomları veriliyor.a) A(x) . B(x)b) B(x) . C(x) çarpımlarını bulunuz.Çözüma) A(x) . B(x) = (3×4 + 1) . (x2 + x)= 3×4 . x2 + 3×4 . x + x2 + x= 3×6 + 3×5 + x2 + xb) B(x) . C(x) = (x2 + x) . (x2 – x + 1)= x2 . x2 – x2 . x + x2 . 1 + x . x2 – x . x + x . 1= x4 – x3 + x2 + x3 – x2 + x + 1= x4 + x + 1 bulunur. | |
|